
1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 1

Towards A Compressive-Sensing-Based
Lightweight Encryption Scheme for the Internet

of Things
Wanli Xue, Chengwen Luo, Yiran Shen, Rajib Rana, Guohao Lan, Member, IEEE,

Sanjay Jha, Aruna Seneviratne, and Wen Hu, Senior Member, IEEE

Abstract—Internet of Things (IoT) is flourishing and has penetrated deeply into people’s daily life. With the seamless connection to the
physical world, IoT provides tremendous opportunities to a wide range of applications. However, potential risks exist when the IoT
system collects sensor data and uploads it to the Cloud. The leakage of private data can be severe with curious database administrator
or malicious hackers who compromise the Cloud. In this work, we propose Kryptein, a compressive-sensing-based lightweight
encryption scheme for Cloud-enabled IoT systems to secure the interaction between the IoT devices and the Cloud. Kryptein supports
random compressed encryption, statistical decryption, and accurate raw data decryption. According to our evaluation based on two
real datasets, Kryptein provides strong protection to the data. It is 250 times faster than other state-of-the-art systems and incurs 120
times less energy consumption. The performance of Kryptein is also measured on off-the-shelf IoT devices, and the result shows
Kryptein can run efficiently on IoT devices. After comparing with other state-of-the-art lightweight ciphers on IoT (Simon and Speck),
IoT system with Kryptein is expected to have a much more longevity with about 35% extended lifetime. Further, experiments illustrated
IoT data variance will not affect Kryptein’s accuracy in a long term usage, and Krpytein is also able to support basic analytics tasks like
machine learning (e.g., classification).

Index Terms—Compressive Sensing; Security; Encryption; Internet of Things.

F

1 INTRODUCTION

IN recent years, the proliferation of sensor-equipped
smartphones, wearable devices, and a variety of con-

nected smart things have enabled a new spectrum of novel
applications for Internet of Things (IoT) [1] and penetrated
into people’s daily life. For example, wearable devices such
as wrist bands and smart watches record users’ daily activi-
ties and health-related statistics: they monitor heart rate se-
ries to infer the health status of the wearers, detect potential
diseases (arrhythmia, etc.), and provide customized health
recommendations. GPS trackers record users’ walking or
running trajectories for daily logging or social interaction

• W. Xue, S. Jha and W. Hu are with the Schoole of Computer Science
and Engineering, University of New South Wales and Cyber Security
Cooperative Research Centre, Sydney, NSW, 2032, Australia.
E-mail: (wanli.xue,sanjay.jha)@cybersecuritycrc.org.au,wen.hu@unsw.edu.au

• C. Luo is with the College of Computer Science and Sftware Engineering,
Shenzhen University, Shenzhen 518060, China.
E-mail: chengwen@szu.edu.cn

• Y. Shen is with Data61, CSIRO, Pullenvale, QLD, 4069, Australia.
E-mail: yiran.shen@csiro.au

• R. Rana is with Institute of Resilient Regions, University of Southern
Queensland, Springfield, QLD 4300, Australia.
E-mail: Rajib.Rana@usq.edu.au

• G. Lan is with Department of Electrical and Computer Engineering, Duke
University, Durham, NC 27710, USA .
E-mail: guohao.lan@duke.edu

• A. Seneviratne is with the School of Electrical Engineering and Telecom-
munications, University of New South Wales and Cyber Security Coop-
erative Research Centre, Sydney, NSW, 2032, Australia.
E-mail: a.seneviratne@unsw.edu.au

Manuscript received Sep 19, 2019; revised Nov 26, 2019. (Corresponding
author: ChengWen Luo.) The original paper is published as ”Kryptein: a
compressive-sensing-based encryption scheme for the internet of things.” in
IPSN 2017, this work is the extension.

purposes. Many of these new types of sensing applications
enabled by the IoT technologies have substantially changed
the way people perceive information about themselves and
the surrounding environment. We envision them to contin-
ually gain their popularity with the blooming IoT.

On the other hand, the sensing applications produce a
large amount of sensor data that needs to be processed
and stored. Storage on the typical IoT devices such as
smartphones, wearables, and static sensor nodes are usually
limited, the data storage and processing functionalities have
been largely shifted to the Cloud or edge [2]. Consequently
, the Cloud1 provides data storage for the continuously
generated sensor data and handles online queries on the
data such as retrieving the raw sensor values or computing
statistics. The Cloud-enabled IoT has released the storage
limitation of typical IoT devices and eased the application
deployment. However, it also poses severe security risks to
the IoT systems. Since the privately collected sensor data is
uploaded to the Cloud, without appropriate protection the
Cloud services could lead to two major threats: (1) Privacy
leakage to the curious database administrator (DBA). (2) Ar-
bitrary threats due to the Cloud/edge being compromised.

To this end, lightweight encryption schemes for IoT are
significantly important not only for Cloud computing, but
especially required for achieving edge computing and edge
intelligence. Booming IoT services (storage, query, analytics,
etc.) seem long for more responsive and secure Cloud/edge
services.

Encrypted Query Processing. Stimulated by the security

1. The Cloud and edge is interchangeable in this paper’s scope.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 2

problem of the Cloud-enabled IoT systems, many research
work has been done to improve the security and privacy of
IoT systems. CryptDB [3] is an online encryption system that
provides practical and provable confidentiality for query
processing on the Cloud without requiring modification
to the Cloud databases. It allows executing SQL queries
(e.g., insertion, selection, etc.) over encrypted data using
a collection of SQL-aware encryption schemes. However,
since CryptDB was proposed mainly as support of web
applications, the computation and energy efficiency is not
the focus of the work. The recent improvement Talos [4]
extends CryptDB and is specially designed for IoT systems
to improve query efficiency and reduce energy consumption
through several optimization techniques that accelerate par-
tial homomorphic encryptions and order preserving encryp-
tions. However, though the computation can be reduced
using the optimization techniques proposed by Talos, we
will show in this paper that system security can be achieved
while performance can be improved significantly.

Kryptein: a new Compressive-Sensing-Based Scheme
for Energy-Efficient Encrypted Query Processing in IoT.
In this paper, we propose Kryptein2, a new compressive
sensing [5] based encryption scheme for secure query pro-
cessing in IoT systems. Through several novel techniques,
e.g., random compressed encryption, statistical computation over
cipher, and decryption on demand, Kryptein provides secure
data insertion, accurate raw data decryption, and efficient
statistics computation in Cloud-enabled IoT systems. Since
IoT systems have their unique characteristics, we are facing
several challenges in designing the secure Cloud-enabled
IoT systems. (1) The communication costs need to be min-
imized when uploading the encrypted sensor data to the
Cloud; (2) Some frequent queries on data statistics such as
finding the distributions can be computed over the cipher
texts directly; (3) The system should support decryption-
on-demand (DoD), that is, different types of functionalities
can be supported using different types of decryption. Incor-
porating these properties, Kryptein has the following fea-
tures that make it a promising encrypted query processing
scheme for Cloud-enabled IoT systems:
Random compressed encryption. Unlike the cryptographic
based approach such as CryptDB and Talos, Kryptein
adopts compressive sensing as the underlying encryption
mechanism seamlessly integrating data encryption and data
compression during data processing. As a result, the size of
the cipher texts are significantly reduced as well as the data
uploading cost and data storage cost. The light-weighted
encryption process also reduces the computation cost on
the IoT device side achieving better energy efficiency for
constrained IoT devices.
Enabling efficient statistical computation over cipher. To avoid
expensive raw data decryption on IoT devices for frequent
queries on data statistics such as finding the average(AVG),
summation(SUM) and standard deviation(SD), Kryptein
supports statistical computation over cipher. Kryptein will
efficiently compute the statistics over the cipher without
requiring to decrypt the raw data values.
Decryption on demand. Since different data might require
different computations for different applications, Kryptein

2. Kryptein is a Latin verbal adjective and means “to hide”.

adopts the onion-structure [3] and provides three layers
of decryption. The decryption on demand (DoD) provides
flexibilities to the IoT applications and only decrypts data
when necessary.
Contribution. In summary, this paper makes the following
contributions:
• We design and evaluate Kryptein, a compressive sens-

ing based encryption scheme for query processing in
Cloud-enabled IoT systems.To the best of our knowl-
edge, it is the first compressive-sensing-based encryp-
tion scheme that achieves energy-efficient secure data
processing for the Cloud-enabled IoT.

• We propose the DoD mechanism, which supports
multi-layer decryption including statistical computa-
tion over cipher and raw data decryption. The DoD
mechanism avoids unnecessary decryption operations
and provides the efficient computation of statistics
and raw data decryption based on application require-
ments.

• We implement the system prototype and evaluate its
real-world performance.The results show that Kryptein
is 250 times faster than the state-of-the-art competing
system (Talos), while reducing the energy consumption
by 99.16%). Furthermore, Kryptein reduces storage re-
quirement by 70% with little performance (accuracy)
sacrifice. Moreover, the further comparison with the
lightweight ciphers targeting IoT applications (Simon
and Speck) shows Kryptein (serving as cipher) can
extend IoT devices’ lifetime for about 35%.

• At last, the usability about Kryptein is evaluated. The
accuracy of Kryptein is investigated in a long-term
usage (about half-year), which proves Kryptein can
remain a steady accuracy for long-term usage. Besides,
a real-world analytics task, face recognition is tested
with Kryptein with accuracy and privacy as the evalu-
ation metrics. The preliminary result suggests Kryptein
is feasible to support basic IoT analytics tasks like
classification.

2 SYSTEM OVERVIEW

Fig. 1 shows Kryptein’s architecture and its workflow.
Kryptein works by compressing and encrypting all data
entries in the trusted client side (Alice); after that, only send
the CS-encrypted (compressed and encrypted) data (cipher)
to the server side and delete the original data locally. With
the key consist of pre-learned dictionary (sparse representa-
tion dictionary learned from the user’s history data) and
random perturbation matrix (generated based on user’s
password), new streaming IoT data can be CS-encrypted
and uploaded to server efficiently. When information such
as SUM, AVG and SD is requested (by family doctor for
instance), the server only needs sending back the cipher
text to trusted IoT devices (Bob), which own the partial
correct keys. On those IoT devices, SUM, AVG and SD can
be calculated directly over cipher with very little cost. With
partial key, IoT devices can only calculate the statistical
information rather than reconstruct the raw data. When the
raw data is request (by Alice), the cipher will be decrypted
to intermediate data (high computation cost) on server and
then converted back to raw data (low computation cost)

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 3

only on trusted devices (Alice’s). During the whole process,
only the trusted devices (who own the entire correct key)
can reconstruct the raw data. We assume any user doesn’t
own an appropriate key as attacker (Eve), and the server
is honest-but-curious. Even an attacker (or eavesdropper)
collected the intermediate data or cipher cannot reconstruct
to the raw data or calculate the statistical information. The
server never knows the meaning of the data or its calcula-
tion results.

Alice

Plain-
text

Plain-
text

Eve

compressed
&

Plain-
text

Plain-
text

compressed
&Update new face imagesUpdate new face imagesUpdate new face imagescompressed & encrypted

Intermediate Data

Kryptein
SQL UDFs

Normal
DBMS

Kryptein

Bob

Kryptein

Kryptein

Hack

Intermediate Data

Ci
ph

er

AV
G

, S
UM

, S
D?

Compressed&Encrypted
IoT Data

Raw
Data

Error
Data

SUM
AVG
SD

Fig. 1: Workflow and architecture: Alice is the user; Eve is
the malicious user (not own Alice’s Key); Bob is Alice’s
family doctor (own the partial Alice’s Key). Key is never
sent to server. Alice who own the correct key can calculate
the SUM, AVG and SD and reconstruct the raw data; Eve
without a correct key can only reconstruct erroneous data.
When Bob send request about calculating AVG, SUM or SD
to server, Kryptein SQL specified defined functions will only
send cipher back to Bob. Bob with the partial correct key can
only compute SUM, AVG and SD over cipher text.

3 BACKGROUND AND THREAT MODELS

3.1 Encrypted Query Processing
In Cloud-based systems, the interaction between the end de-
vices and the Cloud can be abstracted into different queries.
For example, to store the data in the Cloud, insertion queries
can be used to upload data to the Cloud database. Similarly,
frequent interactions involve selecting and searching the
records in the Cloud and computing aggregations such as
summations and averages. To protect the data in the Cloud
during query processing, researchers have recently pro-
posed the encrypted query process. For example, CryptDB
first adopts an SQL-aware encryption scheme which uses
a set of well-defined primitive operators, such as equality
checks, order comparisons, aggregates (sums), and joins.
With specified user defined functions (UDF), corresponding
queries can be operated on specified encrypted database.

As shown in Fig. 2, Kryptein adopts similar architecture
as CryptDB but it uses a new encryption/decryption engine.
To be compatible with existing systems, Kryptein is built
on the unmodified database management system (DBMS).
The new compressive sensing based engine offers several
advantages compared with the CryptDB and Talos. First,
by seamlessly integrating compression and encryption, the
communication costs are significantly reduced during query
processing. Second, through statistical computation over
cipher, aggregations such as finding average, summation,
and standard deviation can be efficiently computed over
cipher texts without raw data decryption. Third, through
optimized dictionary learning mechanisms, the raw values

User
CrypptDB

Proxy

Unmodified
DBMS

Unmodified
DBMS

CryptDB
SQL UDFs

CryptDB
SQL UDFs

Extended with
Talso primitives

Untrusted

Trusted Untrusted

C
ry

p
tD

B
Ta

lo
s IoT

Talos

IoT
Unmodified

DBMS

Trusted Untrusted

K
ry

p
te

in Kryptein
SQL UDFs

transformed & encrypted query

plaintext encrypted

Plain-
text

Plain-
text

encrypted results

Kryptein

Fig. 2: Architecture comparison between CryptDB, Talos,
and Kryptein.

can be accurately decrypted, while ensuring only the end
devices are able to compute the raw values with very small
computation overhead. We will detail the Kryptein design
in the later sections.

3.2 Compressive Sensing
Consider a data vector x ∈ Rn. It is called k-sparse if there
exists a basis, Ψ ∈ Rn×n, which can represent x with only
k(< n)-coefficients. The vector x is k-compressible, if there
is a basis or data dictionary that can represent x, with k-
significant coefficients and (n− k) nearly zero or negligible
coefficients. Natural signals are compressible. Therefore, we
will use the notion of a compressible signal in the rest of pa-
per. Compressive Sensing mainly utilizes compressibility to
recover a data vector from a small number of measurements.
In the Compressive Sensing (CS) literature,“measurements”
and “projections” are used interchangeably, where a pro-
jection is a multiplication of x, with a vector φi, and the
vector pair satisfies certain conditions. If we take m such
measurements and stack them as a measurement matrix
Φ ∈ Rm×n, the projections can be represented by:

y = Φx = ΦΨθ (1)

where θ ∈ Rn is the representation of x in Ψ. As m < n,
(1) is an underdetermined problem, i.e., there are more vari-
ables than the number of equations, therefore, (1) will have
more than one solution. Encouragingly, adding the sparsity
constraint that the data vector is sparse or compressible al-
lows one to find a unique solution to this underdetermined
system of linear equations.

The classical solution to this underdetermined system of
linear equations is to minimize the `2 norm, i.e. minimize
the amount of energy in the system. This is usually simple
mathematics, however, this leads to poor results for most
practical applications. `1-norm been shown as the most
feasible in its tractability and accuracy. Most importantly,
`1-norm involves solving an easier convex optimization
problem:

θ̂ = arg min
θ
||θ||`1 , s.t. y = ΨΦθ, (2)

which can be solved in polynomial time.
In the context of compression secrecy, the data vector

x is the plain text and y is the encrypted or cipher texts.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 4

Representing (1) as (3), where Φ is measurement matrix and
A is holographic dictionary [5], [6], the cipher texts y can
be decrypted to the raw plain text x̂ (estimated x) only with
the correct A and Ψ.

y = ΦΨθ = Aθ (3)

CS in encryption will sacrifice accuracy (only get the esti-
mated x̂) while achieving reduction in wireless transmission
volume. The compression is lossy and the space savings can
be represented as {1− m

n } .
Previously, [7] have shown that to achieve a high accu-

racy while maintaining high compression, the data dictio-
nary and the projection matrix need to be tailored to the
data vector. Intuitively, a tailored data dictionary provides
a highly compressible representation of the data vector
and a projection matrix can be tailored to achieve higher
incoherence with the data dictionary, which is a require-
ment for successful reconstruction. In addition, a tailored
dictionary and a tailored project matrix can also produce a
unique holographic dictionary A while maintaining higher
reconstruction accuracy compared to using an off-the-shelf
dictionary (e.g., Fourier, Discrete Cosine Transform) with
a random projection matrix (e.g., i.i.d Gaussian, Bernoulli
etc.). Note that despite the uniqueness of A it could be
compromised if an attacker gets access to the transmission
channel, but without Ψ, it is not possible to reconstruct
x. The results later in this paper (see section 9) show that
without the “same data” to learn Ψ, it is difficult to recover
it. This makes the proposed system highly reliable.

3.3 Learning Sparsifying Dictionary

In dictionary learning, given a set of P data vectors
{x1, x2, ..., xP } ∈ Rn a dictionary D ∈ Rn×d is computed
such that the vector xis are simultaneously sparse in D. In
other words, given the representations si of xi via xi = Dsi,
all the vectors si,i=1,...,P need to be sparse in D. Previously,
we used a notation Ψ to represent a basis. However, we
introduced a different notation D since dictionaries are usu-
ally overcomplete (number of columns are greater than the
number of rows), whereas basis is usually a square matrix.
Due to the change in the dimension, we also replaced the
previously used notation θi for coefficients with a new
notation si.

Dictionary learning can be formulated as an optimiza-
tion problem. The requirement that si is sparse can be im-
posed by forcing the vectors si to have a small `1 norm. Let
dj denote the j-th column of D. The optimization problem
can be defined as follows:

min
si,D

P∑
i=1

(
1

2
‖xi −Dsi‖22 + λ‖si‖1) s.t. ‖di‖2 ≤ 1∀j=1,...,n,

(4)
where λ is a regularization parameter. It regulates si so that
it does not grow too sparse or too dense. The optimization
problem in (4) is convex with respect to each of the variables
D and si, when the other one is fixed. Therefore, generally,
the solution could be obtained in two steps: getting the most
sparse coefficient si thus keeping the dictionary D fixed,
and then learning the most sparse representation dictionary
D while keeping the coefficients si fixed [8]. In this paper,

we use SPAMS [8], which was previously used by [7] for
trajectory reconstruction. For dictionary learning, SPAMS
uses the LARS-Lasso algorithm [9], which is a homotopy
method [10] providing the solutions for all possible values
of λ. Using SPAMS because [7] achieved a higher reconstruc-
tion accuracy for GPS trajectory compare to other competing
methods.

3.3.1 Construction of Projection Matrix
We adopted the method proposed in [7] for an construction
of the projection matrix. This method performs better than
the best-reported methods [11], [12] in the literature. The
method first computes the Singular Value Decomposition
(SVD) of the data dictionary D:

D = UΛV T , (5)

where T denotes matrix transpose, Λ ∈ Rn×d contains the
singular values in its main diagonal, and U ∈ Rn×n and
V ∈ Rd×d are orthonormal matrices. Then the m columns in
U corresponding to the largest m singular values of D are
chosen to form the projection matrix. Let assume that the
SVD in eq. (5) has been permuted so that singular values
appear in non-increasing order in the diagonal of Λ. With
this notation, let Um denote the sub-matrix containing the
left-most m column of U , which also corresponds to the
largest m singular values of D. Our choice of the projection
matrix is therefore, UTm. In [7] it has been shown that this
choice of projection matrix maximizes the signal power
of y. A higher signal power typically translates to lower
estimation error.

3.4 Threat Models
Kryptein compresses and encrypts all data entries in the
trusted client side and only sends the compressed and en-
crypted data to the server side. The client devices (e.g., smart-
phones) encrypt the user data using the learned dictionary
and password key. For low cost computation such as aver-
age (AVG) and standard deviation (SD) , related cipher texts
will be sent back to the users’ smart phone for fast statistical
computation over cipher. For high-cost raw data decryption,
the computation-intensive tasks will be processed by the
Cloud. Then the computed sparse coefficients will be sent
back to the client for efficient raw data reconstruction. Note
that with only the sparse coefficients, the Cloud cannot
decrypt the raw data, hence keeping the data protected
during the query processing.

3.4.1 Threat 1: Curious Database Administrator
In this threat model, we assume the Database Administrator
(DBA) is honest-but-curious, and the DBA doesn’t have the
knowledge of dictionaries learned on the client side. The
honest-but-curious adversary is a legitimate participant
(e.g., DBA) in a communication/computing procedure
who will not deviate from the defined procedure but will
attempt to learn all possible information from legitimately
received/result messages [13]. The attacker (e.g., DBA) is
assumed to be only ‘curious’ and attack is passive. The
attacker is only curious about the confidential data, but
will not modify any data stored in the Cloud. Our goal is
to achieve confidentiality (data secrecy) of the data. This

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 5
	
	
	
	
	
	
	
	

	
	

	
	

	
	 	

	

549.813	
-21.640	
-8.9652	
7.82230	
-6.5372	

75	
78	
79	
80	
…	
73	
72	

Φ × 	

	

!"#ℎ!" !"#! !" !"#$%&'(#)* 	

	 	

	

! !"#$%&'(#) !"#$%& =	

	

!	

Fig. 3: Compression process: The x on the left is an example
of one real column heartbeat data and the y on the right is
the result after it has been compressed with user’s specified
projection matrix Φ.

threat includes DBMS software compromises, root access to
DBMS machines, and even access to the RAM of physical
machines [3].

Approach. Kryptein adopts the random compressed en-
cryption to protects the data from the curious DBA or other
attackers who have the full access to the data stored in the
DMBS server. Since the data stored in the Cloud database is
compressed and the DBA doesn’t have the knowledge of the
dictionary, Kryptein prevents the private information from
being reconstructed by curious DBAs. As shown in Fig. 3,
even the cipher text y is stored on the Cloud, the curious
DBA cannot decrypt the real heartbeat data (even the range
of the data) without the dictionary (Ψ).

3.4.2 Threat 2: Arbitrary Threats
In this threat, the entire server is compromised and all
the compressed data stored in the server is exposed to a
malicious hacker, one who is an active attacker and is able
to launch arbitrary attacks. For example, she can use the
dictionaries learned by herself to reconstruct the raw data
(x) from cipher texts (y).

Approach. We tackle this threat by taking the compressive
sensing gross encryption approach on numerical data. Our
approach in Kryptein provides secure protection against
the malicious hackers by ensuring that without the user
“keys” (locally learned dictionaries) the raw private data
cannot be accurately reconstructed. The server will never
request decrypted data from the client. Even the fully com-
promised Cloud server will not send malicious requests to
clients instructing them to perform raw data decryption
and send back to server. The server will only perform as
a safe vault and never get access to raw data. More detailed
discussions on the security analysis will be presented in the
security evaluation section.

3.4.3 Threat 3: Eavesdropper Threats
In this threat, the eavesdroppers receive all the communica-
tion data by sniffing the communication channel. The eaves-
droppers are able to perform active attacks to reconstruct the
user data.
Approach. In Kryptein, even if the eavesdroppers are able
to obtain the whole communication information, the threat
can be viewed the same as Threat 2 discussed above. In this
situation, the data leakage becomes same as Threat 2 when

TABLE 1: A Summary of Key Notations

Symbol Meanning
xi the i-th raw data segment (with dimension n)
x̂i i-th raw data segment get recovered correctly
x̂′i i-th raw data segment get recovered by the hacker
xi, µ average of i-th raw data segment
σ standard deviation of i-th raw data segment
X raw data segments used to learned the dictionary
y projections or cipher text
y′ perturbed projections or cipher text
n the raw data segment dimension
m the compressed (or perturbed) data dimension
i data segment index
Ψ learned dictionary/basis
Φ compressive sensing projection matrix generated from Ψ
A compressive sensing encryption key (A = ΦΨ)
A′

i perturbed compressive sensing encryption key (A′
i = ρiΦΨ)

Γ the function generate the perturb transformation matrix
θi the genuine (estimated) sparse representation of xi
θ̂i the recovered sparse representation of xi
ρi random perturbation matrix
Alice Normal user
Eve Malicious user/eavesdropper

the entire server gets compromised. Therefore, Kryptein
provides security guarantee to the eavesdropper threats as
well.

4 RANDOM COMPRESSED ENCRYPTION

This section illustrates how Kryptein compresses and en-
crypts the user data. Unlike the deterministic encryption
method (decrypted value exactly equals to the plaintext),
CS only reconstructs (decrypts) the data to estimated values,
and is regarded as a gross secure method. For some sensing
apps, close estimation of the raw data instead of getting
the exact value satisfies the application requirement. For
example, in GPS tracker, with a close estimation of the GPS
values, the app can approximately get the user’s walking
trajectory. There are less requirements to get the exact GPS
values for those kind of applications.

Furthermore, sensors themselves inherently contain the
measurement errors. For example, civilian GPS has a 7.8
metre 95% interval horizontal accuracy3. The optical heart
rate sensors have 85% to 90% accuracy in real world test 4.
We use both GPS sensors and optical heart rate sensors in
our evaluation (Section 9).

On the other hand, compared with the measurement
errors from sensors, CS reconstruction error can be very
small. Take heartbeat data as an example, the percentage
error of data reconstruction can be as small as 1%, which
will be illustrated in the later part of this paper (Section
9.1.2). In addition, the CS encrypted data has a significantly
smaller size and incurs less communication costs. Therefore,
in Kryptein, we use CS as the underlying encryption and
compression method to protect the data in IoT systems.

Kryptein first learns a dictionary (Ψ ∈ Rn×n) using
the method discussed in section 3.3, then it constructs a
projection matrix Φ ∈ Rm×n by SVD method eq. (5) refers
from section 3.3.1, m is the dimension after compress. After
that, the user is also required to select a key to generate
corresponding perturbation matrix. In our prototype, we
select a signed 32bit integer as a secret number (depend on

3. http://www.gps.gov/systems/gps/performance/accuracy/
4. http://www.wareable.com/fitness-trackers/heart-rate-monitor-

accurate-comparison-wrist

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 6

Algorithm 1 Compress and Encrypt Data

1: Inputs: Original data segment xi with timestamp i,
seed, and projection matrix Φ.

2: Generate each perturbation matrix ρi with the seed.
3: Calculate compressed and encrypt data segment y′i by

multiply with projection matrix and perturbation matrix
y′i = ρiΦxi

4: Send the y′i to server and delete the original data seg-
ment xi.

the platform) and the integer is used as the seed to generate
a series of random normal distributed matrices ρ ∈ Rm×m
as perturb matrices. For different application purposes,
there could be different ways to generate secure random
perturb matrices. As this is not the focus of our paper, we
adopted the perturbation matrix generation method in [14]
to provide an efficient and secure protection to the data.

Kryptein utilize a linear perturbation method to ran-
domly permute the cipher text y. It is clear that combining
with random perturbation, the cipher texts will be different
even though the original plain texts are the same, hence
achieving higher secrecy. The linear computation will cause
little more computation overhead. Therefore:

ρi = Γ((seed+ i)), (6)

where seed is the user’s secret number, i is the current
data index and Γ is the random normal distribution matrix
generation.

Once the secret dictionary and seed are generated and
stored in the client side, the client then starts to generate
perturb matrices and use the dictionary combined with
perturbation matrix to compress and encrypt each new
sensor data segment. In the rest of this paper, we will use
client or smartphone alternatively as in most current IoT
systems, smartphones are used as the gateways for nearby
IoT devices and act as the client. Each user creates his/her
own key (learned dictionary and seed), which is secretly
stored in the client.

After the perturbation matrix and learned dictionary are
built, new sensor data will be compressed and encrypted
in the client, which results in less energy and computation
consumption than traditional encryption methods as we
will show in section 9.2. After the data is compressed and
encrypted, the original data will be deleted and the CS-
encrypted data will be uploaded to the server. However,
due to the characteristic of matrix computation, the data can
only be processed once being accumulated to one segment,
for example 60 heartbeat data. If the data size is less than one
single segment, Kryptein cannot function. This assumption
can be easily satisfied as IoT systems generate abundant
data. For instance, current wearable devices only take 3 to
10 minutes to generate 60 heartbeat data [15], [16].

The CS-encrypted process is shown in algorithm 1. The
projection matrix Φ is generated from the uniquely learned
dictionary Ψ (also D in eq. (4)). Then each new coming data
segment will be projected with the Φ, meanwhile a random
perturbation matrix is generated based on the user seed.
Then, each compressed data will be randomly perturbed
multiplying with the random perturbation matrix ρi. After

Algorithm 2 Average Calculation on Compressed and
Encrypt Data

1: Inputs: CS-encrypted and perturbed data segment y′i
with m data records from server; projection matrix Φ
from client.

2: Use the user’s seed and the time stamp of y′i to deter-
mine the corresponding perturbation matrix ρi of cipher
text y′i.

3: Calculate the AverageMultiply matrix Mi. (see algo-
rithm 3)

4: Multiply the Mi to the y′i to get the average of the
original data segment xi = ~ν · ~xi ≈Miy

′
i.

5: Output: Estimate average of raw data segment xi

Algorithm 3 Calculate the AverageMultiply matrixMi

1: Inputs: Corresponding perturbation matrix ρi ∈
Rm×m; projection matrix Φ ∈ Rm×n

2: Get the dimension m× n of Φ.
3: Set a support vector ν = [v1, v2, ..., vn], s.t. v1 = v2 =
... = vn = 1

n .
4: Calculate theMi with dimension 1×m by solving deter-

ministic linear equationMi = νΛT (ΛΛT)−1, s.t. Λ =
ρiΦ. (Take pseudo-inverse of Φ as it is not square.)

5: Output: Mi

that, the client sends the compressed and encrypted data
to the server and deletes the local data segment. The final
compressed and encrypted data becomes:

y′i = ρiΦxi (7)

The CS-encrypted data on the server is able to be recovered
only with user’s correct “key” (learned dictionary and the
appropriate perturbation matrix).

5 STATISTICAL COMPUTATION OVER CIPHER

When a user launches a specific query to get the statistical
information (e.g., AVG, SUM and SD), Kryptein requires no
raw data decryption on the server. Instead, it sends back
the CS-encrypted data segment y′i (i = 1, 2, 3...) to the
client for statistical computation over cipher. As a result,
in the worst case, when the server gets fully accessed by the
hacker (Threat 2), there are no more raw data leakage due
to decryption.

Eq.7 represents the data stored in the server after com-
pression and encryption. The random perturbation matrix
(ρi) is used to permute to cipher text. Because the client has
the knowledge of the perturbation matrix sets, he/she can
then correspond to a data segment with relative perturba-
tion matrix.

The algorithm 2 illustrates how Kryptein calculates the
average over the cipher texts. As the ρi is generated based
on the user’s specific seed and the time stamp for each
data segment, the Kryptein client could always reproduce
the perturbation matrix with the seed and the time stamp
i since the starting seed and transformation Γ is known
to the client. Since eq. (7) contains the raw xi, we can
find a medium transformation matrix (Mi) to consist a
support vector (algorithm 3 line 3) to help approximate the

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 7

average through xi = ~ν · ~xi. And due to the linear matrix
transformation property in R, we have:

Miy
′
i =MiρiΦxi ≈ ~ν · ~xi =

1

n

n∑
τ=1

xτ (8)

where 1
n

∑n
τ=1 xτ is the mean value of the data segment

xi. Since the product of ρiΦxi is an underdetermined
matrix, we can only take pseudo-inverse to get the esti-
mated Mi, thus leading to an estimated average calcula-
tion. Theoretically, one can calculate the average over the
cipher even cipher size is less than one single segment by
setting the support vector ν in algorithm 3. For instance
ν = [15 ,

1
5 ,

1
5 ,

1
5 ,

1
5 , 0, 0, 0, 0, 0] can be used in calculating the

average of the first five data points in a data segment of di-
mension 10. However, the more ‘absence’(zero element) in ν
, the less accuracy of the calculated average. Otherwise, one
can directly reconstruct the data by setting an appropriate
ν (only that data point position is 1 and other position
0). Because too much information is ignored, the accuracy
will decrease. The accuracy decrease can be applied to
different applications depending on the requirements. The
error brings by the pseudo-inverse (or the underdetermined
factor) is small and can be ignored, this is further discussed
in the evaluation section (refers to Section. 9.1.2)

In algorithm 3, Kryptein has to re-calculate the dimen-
sion of Φ (line 2) because the client has no knowledge of
x. It has to get the related information from the dictionary
Ψ. Regarding the fact that the Φ is generated from Ψ
(illustrated in section 3.3 and section 3.3.1), Kryptein could
then gain knowledge of Φ via eq. (5), where Ψ and Φ relate
to D and U respectively.

With the algorithm 2 and algorithm 3, Kryptein could
calculate the average of the data segment of x in client.
The client can also calculate the summation as the dimen-
sion of x becomes known (same to row dimension of Ψ).
Another important piece of statistical information which
is supported by Kryptein, is the standard deviation (σ):
σ =

√
E(x− µ)2 =

√
E[x2]− (E[x])2 , where E[x] = µ

is the mean value (AVG) of x.
We can get E[x2] through ‖x‖22/n, and in compressive

sensing theory, only random Φ can be proved satisfy the
Johnson-Lindenstrauss (J-L) lemma [17]. If J-L lemma get
satisfied, it has ‖x‖22 ≈ ‖y‖22. We tested our Φ experimen-
tally to see if it satisfies J-L lemma. Based on our experiment
result in 9.1.2, our method is able to show a very small error
between ‖x‖22 and ‖y‖22 (e.g. Root Mean Square Error of 0.02)
based on a real heartbeat dataset consists of 20 subjects.
Hence, we can estimate ‖x‖22 by using ‖y‖22, and y is the
compressed data segment.

With E[x] and ‖y‖22, we can get the AVG and SD of a sin-
gle segment xi, and it is straightforward to calculate the total

average of a period of time t through µtotal = 1
t

t∑
i=1

(µi), and

estimate the total standard deviation by:

σtotal =
√
E[x2total]− (E[xtotal])2 =

√√√√1

t

t∑
i=1

(E[xt2])− µtotal

(9)
Therefore, Kryptein computes the AVG, SUM and SD over
cipher without additional information leakage.

6 RAW DATA DECRYPTION

In many applications, raw data need to be decrypted by the
client. For state-of-the-art cryptography system, the decryp-
tion typically has high computation consumption[3], [18],
[19]. To reduce energy consumption when decrypting the
raw data in Kryptein, we offloaded the heavy computation
to the server, only leaving the light-weighted computation
and sensitive raw data decryption on the client. There are
existing works in Cloud/Edge-computing context offload-
ing the complex computation to the (edge) server [20],
[21], [22], [23] with special design about privacy protection.
Kryptein is also designed with the privacy consideration on
the Cloud.

Kryptein can directly decrypt the raw data without
going through the statistical computation over cipher. In
Kryptein, eq. (7) can be converted to y′i = ρiAθi ,where
y′i represents the cipher text in server and it keeps CS-
encrypted and perturbed, A refers to the compressive sens-
ing encryption key (ΦΨ) and θi is the sparse coefficient for
i th data segment, i = 1, 2, 3... represents different data
indexes. Therefore the raw data decryption is mainly about
calculating the θ and x̂ (the estimated value of raw data x).
Our purposed method guarantees that the malicious hacker
who gets control of the server could not reconstruct the
original data x̂. We show these results through experiments
in section 9.

To reconstruct the raw data segment x, the client sends
the perturbed CS key (A′i) to the server to solve the eq. (10):

min
θ̂i∈Rn

‖θ̂i‖1 subject to ‖y′i −A′iθ̂i‖2 ≤ ε (10)

where A′i = ρiΦΨ and has the same θ̂i to eq. (11). This is
because the deterministic matrix (ρi) will not intervene with
the result of the `1 optimization.

min
θ̂i∈Rn

‖θ̂i‖1 subject to ‖yi − ΦΨθ̂i‖2 ≤ ε (11)

As shown in the equation above, we want to get the θ̂ in
eq. (10) as the same one without perturbation (in eq. (11)).

After Kryptein calculates the θ̂ in the server, the θ̂ is sent
back to the client. Then, with the genuine user dictionary Ψ,
the user could estimate the raw value using x̂i = Ψθ̂. For
different CS-encrypted data segment y′i, the corresponding
A′i has to be sent to the server to solve the high computation
`1 optimization. Under the worst situation, the hacker could
hold all the A′i. However, the hacker still cannot reconstruct
to the raw data segment xi or the genuine estimation x̂i. By
making the complex computation on the Cloud, the client
device decrypts the raw data only by taking the simple
matrix calculation (x̂i = Ψθ̂) on the intermediate results
sent by the Cloud.

7 DECRYPTION ON DEMAND

To satisfy the need of IoT systems, we design the system
with a layering structure to decouple different functionali-
ties. Different layers correspond to different functionalities
and different computation burdens. As shown in Fig. 4,
we design an onion-like model to implement the function
layers. The consumption of Kryptein in energy, time, and
computation increase when getting deeper inside to the

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 8

core of the onion. Comparing with other onion-like systems
(e.g., CryptDB), our onion layers are less coupling on each
other layers. For instance, the system could reach the third
layer by decrypting the cipher directly instead of peeling the
outside layers.

	

Layer 1: RND Compressed Encryption
Layer 2: Statistical Decryption
Layer 3: Raw Data Decryption

Estimated Raw Data

Fig. 4: Onion-like system layers.

In Layer 1, the data stored on the server has been
randomly compressed and perturbed. Without knowing
the perturbation matrix ρi, the server cannot get to the
genuine compressed data segment y when both yi and ρi
are unknown in y′i = ρiyi. As illustrated in eq. (7), Layer
1 only randomly permutates the processed data and stores
it on the sever. In this way the secrecy guarantee (see sec-
tion 8) as well as significant energy saving is achieved (see
section 9.2).

When a query is launched to the Cloud to collect the
statistical information, Kryptein responds with the Layer 2
function (Section 5). The Cloud only needs to respond to
the query by sending back the relative CS-encrypted data
segments. The client side finally compute those aggregation
results (AVG, SUM and SD).

When applications require the user’s raw data, Kryptein
will decrypt cipher texts to the raw data while keeping
them secret to the Cloud.To balance the security and ef-
ficiency, we decouple the decryption task between Cloud
and the client. The assigned cipher text will be decrypted
into the form of intermediate text (instead of plain-text)
on the Cloud. Afterwards, the intermediate text will be
sent to the client to complete the entire decryption. This
design offloads the heavy decryption computation to the
Cloud with the guarantee that the information leakage is
minimized. In section 9.2, we evaluate and show that Layer
2 could be more efficient (in terms of total time and energy
consumption) than Layer 3 for AVG calculation.

8 PRIVACY ANALYSIS

In this section, we discuss the secrecy properties of our
proposed compressed sensing encryption method. To ana-
lyze the secrecy, consider a K-sparse message x ∈ RN is
chosen from a sample of a probability distributions. A key
set γ ∈ {1, ..., S} corresponds to an M × N compress and
perturbs matrix NounceMγ (NounceMγ = ργ ∗ Phi). Put
into Kryptein, the user wants to send a secret message to
the server. The user chooses her own key ∆ (with uniform
probability among the keys) and encrypts the message
x using the NounceMγ matrix via matrix multiplication
y = NounceMγx. Only the cipher text y is transmitted
to the server, even the server does not know what key is
being used to compress and encrypt the message. If an
adversary, Eve, intercepts the user’s encrypted message y,

but she does not know which key was used to encrypt
the message. It will be very difficult for Eve to recover x.
According to the Shannon’s theory [24], perfect secrecy can
be achieved if the probability of a message conditioned on
cryptogram is equal to a priori probability of the message,
P (X = x | Y = y) = P (X = x). Earlier work [6],
[25] proves that perfect security can only be achieved in
compressive sensing if three conditions get satisfied: 1) the
number of measure M is equal or greater than two times
the sparsity of the messages, i.e., M ≥ 2k; 2) the sensing
matrix (called ‘measurement matrix’) satisfies RIP (see sec-
tion 3.2); and 3) the number of source messages goes to
infinity. Theoretically, the perfect secrecy gets proved based
on the Shannon’s definition only if the number of sources
goes to infinity, which is not achievable in real application.
However, the argument holds if I(X;Y) (I refers to the
mutual information) becomes small enough.

To understand how difficult it is for Eve to recover the
message x using only y, knowledge that howA is generated,
and the set of seed, one possible approach for Eve is to try
all ‘keys’ (refers to random generated matrices set corre-
sponding to the user’s secret seed) and attempt to recover
the signal x. She would only stop when she thinks she has
succeeded, this similar topic has been detailed discussed in
[25].

There are also other applications and papers that apply
compressive sensing secrecy [26], [27], [28]. Those CS based
secrecy systems used a random measurement matrix as the
secret, which make more sense to preserve the secrecy of
the data due to the decoupling from the plaintext. Kryptein
adopts a learned projection matrix to make the reconstruc-
tion accuracy loss as small as possible meanwhile added
one more layer (random Layer) to decouple with plaintext.
By this, the secrecy (randomness) get enhanced to the same
of those random compressive sensing secrecy systems but
with the least reconstruction error.

Attack methods like Principle Component Analysis
(PCA) based attacks [29] and Spectral Filtering (SF) [14]
based attacks are mainly to exploit the correlation that exists
among the multi-dimensional data (with time series) to filter
out the injected noise [30], [31]. However, in our model,
we ‘compress’ the data instead of ‘injecting’ the noise and
we compress the data dimension. Those attacks method
cannot be used in Kryptein. The better attack method is
to guess/predict the essential projection basis with current
information. For the reason above, we assume Eve knows
and follows our method in trying to get the most closed
dictionary. Since Alice’s personal dictionary is kept securely
in the client, Eve could reconstruct the data through getting
a ‘closed’ dictionary by (1) learning a dictionary from an-
other person’s data; (2) learning a dictionary from a group
of people’s data. This is based on the inference that: for a
long and large dataset, people’s behavior probably could
have the similar representation. In the attack model, Eve
could learn her own Ψ′. We will show in the evaluation
sections that such attacks incur large reconstruction errors,
and cannot get a close estimation to the real data.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 9

9 EVALUATION

9.1 Experiment with Cases
We implemented Kryptein on Microsoft Bands [16] and
Fitbits[15], for data collection, and we used Motor E (2nd
Generation) running Android 4.4 as the trusted client. The
Cloud server ran a MySQL database on Ubuntu 12.04.

We evaluated Kryptein by using two cases: Secure GPS
Track and Private Health Monitor. Secure GPS track, namely
is to maintain a secure GPS track for the user who is using
normal GPS services. Through Kryptein, GPS data can be
shifted and stored in the Cloud safely and will only illustrate
to the user with the key. Our GPS data is from the Microsoft
project GeoLife [32]. We randomly selected 11 individual’s
data sets (10 subjects as a group and another 1 subject as
an individual) as the malicious user’s training data. For the
private health monitor case, we collected real data from 20
subjects using Fitbit and Microsoft band 5. Subjects are using
a normal health monitor service e.g. send personal heartbeat
data to Fitbit Cloud and get information summary there. We
collected for about 30mins to 1 hour of heartbeat data for
each user (about 4K data records) without any modification
on collection devices. For both cases, the hacker launches
both ‘individual’ and ‘group’ attacks.

Two metrics are used to evaluate the system perfor-
mance. For the statistical computation over cipher accuracy,
we take RMSE (Root Mean Squared Error) as the metric.
For GPS data, the AVG and SD cannot be interpreted
meaningfully. Hence we only measure the reconstruction
accuracy for GPS data. To measure the decryption accuracy
for heartbeat data, we take the percentage error (PE) as the
accuracy measurement. PE value could better represent the
error value to the original value.

9.1.1 Secure GPS Track
It is clear that people have had an increasing understanding
about how personal private information can be revealed by
(raw) GPS data and what potential threats can be caused
due to those information leakages [33]. Many IoT applica-
tions have embedded with GPS sensor in order to provide a
location related services. For the purpose of providing better
services and better resource limits of IoT devices, GPS data
is always uploaded to the Cloud, which further deteriorates
the leakage [34]. Besides, uploading a lot of GPS points may
lead to problems like heavy network traffic and much higher
power consumption [35].

For the GPS trajectories, we adopt the method to convert
the GPS to Universal Transverse Mercator (UTM) coordi-
nate system to compress and encrypt. After the decryption
process of Kryptein, the UTM was turned back to GPS
and then was simulated on the map. For the benefit of
spaces, we will evaluate the secrecy of GPS dataset in this
paper only because the reconstruction accuracy and energy
consumption has been well studies in previous work [7].The
reconstruction error directly measures how close the mali-
cious user can estimate the real user private data.

Fig. 5(a) shows the data reconstructed by the user in
Kryptein using the genuine dictionary as keys. We can
see that the reconstructed GPS trajectory fits the original

5. Ethical approval for carrying out this experiment has been granted
by the corresponding organization (Approval Number HC16180).

(a)

(b)

Fig. 5: Individual and group attack result compare to gen-
uine reconstruct: (a) GPS dataset (b) Heartbeat dataset.
G represents for group attack, number represent for the
amount of data used in that attack.

trajectory very well, which indicates that Kryptein provides
an accurate raw data decryption for users. The percentage
error of Latitude and Longitude are calculated separately in
UTM unit.

To understand how close the malicious user can estimate
the private data using his/her own trained dictionaries,
we vary the amount of malicious user’s training data and
measure the reconstruction accuracy. We randomly selected
10 individual’s GPS data (as a group) from the Geolife
dataset as the training dataset of the malicious user, and
increase the amount by 0.1n each time. For example, the
notation G18K refers to collect 18K data (10×0.5 × 3600)
records as a group. As shown in Fig. 5(a), group attacks
achieved less reconstruction error than individual attacks,
but they are significantly larger than the error achieved by
genuine dictionary. For example, the smallest reconstruction
error achieved by attacker is 15% (the average error of
Latitude and Longitude is about 0.15 showed as G18K
in Fig. 5(a)). This is 30 times larger than using genuine
dictionary (showed as Genuine Recon. in Fig. 5(a)).

Fig. 6(a) and Fig. 6(b) show the visualization of the
recovered GPS trajectories using the genuine dictionary
and the least reconstruction error ‘fake’dictionary (which is
G18K group in Fig. 5(a)) used by the malicious user.

Although the attacker’reconstruction error using the
‘fake’dictionary is not that much (the smallest one is
15%), the GPS trajectory turns quite weird (showed
in Fig. 6(b)). The reason for that is GPS data is processed (en-
crypted/decrypted) in UTM unit. When drawing the GPS
trajectory in real map, the data is required to be converted
to Longitude and Latitude. Thus, the attack reconstruct GPS
trajectory is quite leaping and even in different magnitude

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 10

(a) (b)

Fig. 6: Real and attack reconstruct GPS trajectory: (a) the
raw GPS trajectory and real reconstruct by Kryptein (b)
individual attack result. The x- and y- axis is the real latitude
and longitude respectively.

like the Latitude as shown in Fig. 6(b).
The results indicate that Kryptein allows accurate raw

data decryption on the user side, the malicious user who
does not have the knowledge of the correct dictionary but
uses the locally learned dictionaries is not able to get a close
reconstruction result. In this way, Kryptein protects the data
confidentiality in IoT systems.

9.1.2 Private Health Monitoring

0.1 0.2 0.3 0.4 0.5 0.6
Compression Ratio

10-3

10-2

10-1

R
M

SE

Average
Norm
Standard Deviation

(a)

65 70 75 80 85

Heartbeat

0

0.05

0.1

P
D

F

Real Value Distribution
Calculated Value Distribition

(b)

50 55 60 65 70 75 80

Heartbeat

0

0.5

1

C
D

F

Real Distribution
 Calculated Distribution

(c)

Fig. 7: Experimental results of parameters choice. Note log-
scale Y-axis in (a).

With the help from the prosperous sensor-embedded
wearable devices, people’s attention has been re-drawn back
to how IoT systems can help in improving daily health.
Though the continually generated health data can be shifted
to server to ease the burden on IoT device meanwhile
provide a Cloud-based service, the privacy of that health
data is also a big concern. We evaluate Kryptein with our
prototype IoT system to determine how Kryptein’s utility
and security functions as a health monitor application.

Fig. 7(a) shows the RMSE of heartbeat data by varying
compression ratios. To understand how different compres-
sion ratios affect the reconstruction results, we vary the ratio
in the ranges of [0.1 0.6]. AVG refers to the average value
of each data column x, Norm is the 2-norm squared of
the vector x, with the AVG and Norm, we could calculate
the SD (assuming the data satisfies the standard normal
distribution) which represents the standard deviation of x.

As the compression ratio gets larger, the RMSE decreases
significantly. It is clearly showed that with compression ratio
0.3, those RMSEs have been smaller than 0.02. This means
the estimated AVG and SD on cipher text could already be
very closed to the raw data. According to ratio larger than
0.3, it is clear the RMSE is decreasing. However, a larger
compression ratio means data gets less compressed which
implies the burden increasing for the entire system. Which
compression ratio to choose is up to the purpose of the
genuine application. In the rest of this paper, compression
ratio 0.3 (m = 0.3n) is selected as the result of balancing
accuracy and resource consumption in our system.

Fig. 7(b) shows the PDF (Probability Density Function)
of the heartbeat data. It is clear that with the calculated AVG
and SD, the PDF curve has a high correlation with the real
curve. Fig. 7(c) refers to the CDF (Cumulative Distribution
Function) of the same data. The two curves are almost fully
overlapped, showing that the calculated data statistics fit the
real data.

Fig. 5(b) shows how close the malicious user can estimate
the private heartbeat data using his own trained dictio-
naries. We vary the amount of malicious user’s training
data and then measure the reconstruction accuracy. The
compression ratio is 0.3. We use 20 testers’ heartbeat data (as
a group) as the training dataset of the malicious user, and
increase the amount of data each time. The result in Fig. 5(b)
shows that group attacks cannot achieve a significant better
reconstruction accuracy than individual attacks, and both
of them achieved significantly lower accuracy than that by
genuine dictionary.

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression Ratio (m/n)

10-4

10-3

10-2

10-1

R
oo

t M
ea

n
Sq

ua
re

 E
rro

r (
lo

g
sc

al
e)

RMSE of Estimated Average with Different Compression Ratio

Fig. 8: Error of estimated average computed over cipher
(Heartbeat dataset).

Estimated average over cipher is a very useful and
crucial function for many applications like private health
monitoring ones. Since the proposed CS-based encryption
method can only calculate the estimated average (see Al-
gorithm 2) rather than the lossless one, we evaluate how
accurate is the estimated average with different compression
ratios. Fig. 8 illustrates the RMSE between estimate average
and genuine average calculated with raw heart rate data. It
can be seen that even with an extremely small compression
ratio (m/n = 0.01, 60 heart rate data compressed to only one
decimal), the estimated average is still close to the genuine
average with about 0.02 RMSE. At a commonly adopted
compression ratio (e.g., m/n = 0.1), the RMSE between
estimated average and the genuine average is even less than
0.005, which is considered can be ignored by most of the
user cases.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 11

0 10 20 30 40 50 60 70 80
Segment

40

60

80

100

120

140

160
Av

er
ag

e
H

ea
rt

R
at

e
Attack Result on Estimated Average

The Genuine Average

Fig. 9: Attack result on average heart rate reading. Each trace
represents a possible guess by the attacker.

In the extreme case if the private health application
only require a periodical average heart rate reading, one
decimal cipher can handle this assignment. This is because
from information theory perspective, one decimal cipher’s
information is sufficient to represent another decimal value
(see estimated average in Fig. 8, CS-encrypted from 60 heart
rate reading each segment), however, the raw heart rate
data reconstruction error will rise significantly because of
the limit information entropy. From the privacy perspective,
in the worst case, the attacker can obtain the one decimal
cipher (by compromising the Cloud or eavesdropping the
channel), then the attacker can launch attacks to guess the
other secret value held by Bob (family doctor in Fig. 1) in
order to reveal the user’s average heart rate readings.

According to Algorithm. 2, the average estimation can
be derived from xi = Miy

′
i, which Mi and y′i degenerate

to a decimal from a vector in this extreme case. Knowing the
cipher (y′i) and normal average heart rate range is [60,100],
attacker can only guess the range of the secret value (Mi) to
estimate the average heart rate value of each data segment
(xi). The attack result is presented in Fig. 9, the attacker
can guess any value for the secure number held by Bob as
many times as he/she wishes. Even the attacker can obtain
all segments’ average cipher (e.g., about 80 data segments in
Fig. 9 x-axis). Without additional information (about Bob’s
key or Alice’s key), the attack cannot ascertain which attack
result is (close to) the genuine one (i.e., privacy protection),
since many of them are located within that reasonable range.
In addition to that, Kryptein adopts a strategy changing
the random perturbation matrix (ρi) periodically, it is even
difficult for the attacker to obtain a fixed cipher (Mi), which
further enhance the provided privacy protection.

Fig. 10 visualizes the reconstructed heartbeat data. The
attack dictionary used is the individual attack dictionary
from Fig. 5(b), which has the smallest attack reconstruction
error. The figure shows the results of four different random
data segments. As shown in the figure, the reconstruction
using genuine dictionary is very close to the original raw
values. On the other hand, the reconstruction using the
attack dictionary produced significant errors. The results
show that it is difficult for the attackers to reconstruct origi-
nal raw data with cipher texts without the knowledge of the
correct dictionary. Therefore, the secrecy of raw heartbeat
data is well protected.

0 20 40 60
60

70

80

90

H
ea

rt
R

at
e

0 20 40 60
65

70

75

80

H
ea

rt
R

at
e

0 20 40 60
60

70

80

H
ea

rt
R

at
e

0 20 40 60
Data Records

70

80

90

H
ea

rt
R

at
e

Raw Value
Genuine Reconstruction
Attack Reconstruciton

Fig. 10: Heartbeat data recovery. Four random heartbeat
data columns (60 data records each column) selected to
show the difference between genuine reconstruction and
attack reconstruction.

9.2 Resource Consumption
At this stage, most IoT devices need a gateway to provide
stable Internet connection (e.g. Fitbit, Microsoft Band). That
is why we need to adopt an Android smartphone as part of
the client to form a reliable IoT environment. (For wearable
devices providing Internet connection (e.g., iWatch from
Series 3), Kryptein can be directly installed on that.) There-
fore, we also conduct experiments and measurements on
ultra-low power wireless micro-controllers widely used by
mainstream IoT devices to illustrate how Kryptein performs
with IoT devices in isolation.

9.2.1 Measurement on Smartphones
We used approximately 3,000 heartbeat data records col-
lected in 6 hours to evaluate resource consumption
of different systems (normal database management sys-
tem(MySQL), CryptDB, Talos, and Kryptein). This was re-
peated 25 times to calculate a 95% confidence interval (C.I).
Since the processing time is quite short, to reduce the mea-
surement noise we measured and recorded the total time of
25 times to show the comparison result. Table.2 shows the
total time used to upload the real heartbeat data. Kryptein is
approximately 250 and 160 times faster than CryptDB and
Talos respectively. It has to be explained here that Kryptein
is much more faster is not only because the encryption
method is faster but also because Kryptein processes and
uploads data in segment unit (for example, 60 heartbeat
data will be compressed and upload as one segment), which
other (encryption) systems have to process and upload data
point one by one.

TABLE 2: Time for each system to insert data into the
database

System Sample x̄ (s) C.I(s)
Normal DBMS 226.02 [222.93 , 229.10]

CryptDB 462.02 [455.95 , 468.10]
Talos 326.32 [324.19 , 328.46]

Kryptein* 1.89 [1.83 , 1.95]

Table.3 shows the power consumption on the client side
(a Motor E Android smartphone). Since we implemented
our prototype system on the Android smartphones, we used
the Trepn Power Profiler [36] to measure energy consump-
tion of the smartphones. It shows that Kryptein (0.27mW)
consumes approximately 170 and 120 times less energy than
CryptDB (34.29mW) and Talos (26.85mW) respectively

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 12

Kryptein decouples the computation between client and
server to balance the secrecy and efficiency. To assess the
efficiency, we only concern about the time and energy
consumed in the client end as we assume the server has
no resource limitation. To make the measurement general
and fair, we only compare with other two secrecy systems
over the data insertion procedure (encryption and upload-
ing), which can be found in all three systems and requires
resource on client devices only.

TABLE 3: Power consumption for each system to insert data

System Sample x̄ (mW) C.I (mW)
Normal DBMS 16.49 [14.96 ,18.01]

CryptDB 34.29 [31.06,37.50]
Talos 26.85 [23.83,29.86]

Kryptein* 0.27 [0.23,0.31]

We tested Kryptein Layer 2’s and Layer 3’s energy and
time consumption for calculating AVG separately and the
results are shown in Table 4. The complexity of Layer 2 to
AVG calculation is about O(m2 + m) and for Layer 3, it is
O(n2 + 1), which m � n. Only the calculation on client
device counts, because it is assumed that the Cloud has no
resource limitation. Besides, Layer 3 has a higher system
consumption in communication. Layer 2 only sends back
the compressed data from Cloud to client. The experiments
are under our school’s WiFi environment (upto 300Mbps
for one access point) with 802.11i. Our experiments were
carried out under an average 4MB/s uploading speed. Two
layers almost take the same amount of time to calculate the
AVG and send it back to the client. However, the result
shows that Layer 3 (18.3 mJ) will take almost 12 times more
energy than Layer 2 (3.3 mJ). This shows our DoD structure
is more energy efficient.

We implemented AES128−Zip as a baseline comparison
method to show Kryptein is superior as a compression and
encryption method. It is clear that AES128−Zip has no data
fidelity loss and Kryptein will make the cipher smaller as
the trade-off of accuracy loss. We chose AES128−Zip as
comparison since it is widely used in data compression. The
result is shown in Table 5. AES128−Zip adopts zip4j [37] to
implement the compression part and then encrypt the com-
pressed zip data file with AES-128. We did not implement it
in reverse order because cipher is usually less compressible.
The parameter setting for zip and compression are both
normal (medium time consumption and medium compress
level). We tested the two compress and encryption system
on 10min, half hour, 1 hour and 10 hour heart rate data.

TABLE 4: Energy and time consumption for AVG calculation

Computing Communication(WiFi)
Consumption Time Energy Time Energy
Layer2 1.8ms 826µJ 0.9s 1.5mJ
Layer3 1.1ms 24µJ 1.2s 18.3mJ

TABLE 5: Efficiency comparison for different data length
after compressed and encrypted

AES128-Zip Kryptein
Original Time(ms) Cipher(byte) Time(ms) Cipher(byte)
10min 109 192 86 41
30min 112 544 102 123
1hour 115 1088 107 246
10hour 167 10816 111 2460

Table 5 shows that the computation time and cipher text
length of two methods compressing and encrypting data
records. It shows that Kryptein outperforms AES128−Zip in
both computation time and cipher text length. In particular,
the cipher texts produced by Kryptein are approximately
5 times shorter than those produced by AES128−Zip. A
more comprehensive comparison with specially designed
IoT cipher will be detailed in the next section.

20 40 60 80 100 120
Different Data Size

92

94

96

98

100

R
ec

on
st

ur
ct

 A
cc

ur
ac

y
(%

)

100

101

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

Fig. 11: Different dictionary size impacts. Note log-scale for
Y-axis on the right hand side.

Fig. 11 illustrates the reconstruct accuracy and power
consumption trade-off when Kryptein adjusts for different
dictionary sizes. When we take a 0.3 compression ratio as in
our previous experiments (see section 9.1.2), it shows that
0.3 could already achieve a good accuracy. When the dic-
tionary size reaches 60 for our heartbeat data, Kryptein can
achieve a good reconstruct accuracy (about 96%). Though
Kryptein can adjust dictionary size to a larger dictionary
size (e.g., 80, 100, 120), the accuracy can only improve less
than 2% but will cost more than twice the energy than the
dictionary size of 60. Besides, a larger dictionary size will
result in a longer system latency because Kryptein client has
to accumulate 80, 100, 120 data records to run compression
and encryption.

9.2.2 Measurement on IoT Devices
In this part, we investigate the energy consumption of the
proposed system using state-of-the-art wearable systems.
We selected the Texas Instrument SensorTag as the target de-
vice, which is embedded with the ultra-low power CC2650
2.4GHz wireless micro-controller. It is widely used by to-
day’s mainstream wearable devices such as Fitbit. Our Sen-
sorTag is running with the Contiki 3.0 [38] which is an open
source operation system for IoT devices. The experiment
setup for the power measurement is shown in Fig. 12. We
apply the INSTRUSTAR ISDS205X oscilloscope6 to precisely
measure the energy consumption in both computation and
data communication of the proposed system. We connect the
SensorTag with a 10Ω resistor in series and power it using
a 3V coin battery. The oscilloscope probe is then connected
across the resistor to measure the current going through it.

To make the measurement comply with the previous
experiments, we still use one segment of heartbeat data with
size 60 as the input and measure the average consumption
of the system by repeating the Kryptein function for ten
times. To accurately measure our system performance on

6. Different oscilloscopes are used compared to raw conference pa-
per [39], but same experiment design is kept.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 13

3V Battery

10ohm Resister

Fig. 12: Power measurement illustration.

SensorTag, we disabled all the irrelevant modules (i.e., the
processing of the on-board sensors and LEDs) on SensorTag
during the experiment.

TABLE 6: Energy and time consumption for Kryptein run-
ning on SensorTag.

Computing Communication
Compression Time(ms) Voltage(mv) Energy(µJ) Data Size (Bytes) Energy(µJ)

6 8.31 14 34.90 43 9.53
12 8.7 14 36.54 86 19.07
30 8.83 14 37.09 210 47.68

The results are shown in Table 6. The system energy
consumption comes from two parts, namely the consump-
tion in computation of Kryptein and the cost in transmitting
the compressed and encrypted data. The 60 heartbeat data
are compressed and encrypted to cipher data with a size of
6 (compressed to 10%), 12 (20%) and 30 (50%) separately,
and then transmitted using a Bluetooth low energy (BLE)
beacon. Assuming the same underlying platform we used
in our power measurement and the system performs the
computation and transmission every 10 minutes, the overall
energy consumption in compressive-encryption, and data
transmission in this scenario is totally 0.16J per day. This
contributes approximately 0.02% of the daily energy budget
of a Fitbit device with 5 days lifetime and a lithium-polymer
battery capacity of 4.32kJ.

9.2.3 Overhead

Learning a sparse presentation dictionary will indeed in-
crease the system overhead compared to commonly used
random matrix like Gaussian matrix and Bernoulli matrix.
However, the overhead is not a big issue/constraint to com-
monly home devices (e.g., personal computer, smart phone,
etc.). In contrast, the data reconstruction accuracy is sig-
nificantly improved [40]. We tested the dictionary learning
process on a 3 GHz clock speed CPU (8th Generation Core
i5). The SPAMS [8] is used as the optimization toolbox (for
solving various sparse estimation problems). We adopt the
setting from private health monitoring scenario. 24 Hours
heart rate data (around 8K heart rate readings) is used
to train a 60x60 dictionary matrix. We took 500 iterations
in the learning process, which is consistent to the evalua-
tion setting. It takes about 75s to complete the dictionary
training process and 102KB for the training data storage.
The dictionary learning algorithm take about 20MB extra

TABLE 7: Parameters Selection of Simon and Speck.

Simon Speck

Key Size (bit) Round
Cipher Block

Size (bit) Key Size (bit) Round
Cipher Block

Size (bit)
64 32 32 64 22 32
128 44 128 128 32 128
256 72 128 256 34 128

RAM when running. And only single CPU is used during
the dictionary training process. Thus, the insignificant extra
overhead won‘t be a challenge for normal home devices.

10 COMPARISON WITH LIGHTWEIGHT CIPHERS

National Security Agency (NSA) published a family of
lightweight block ciphers: Simon and Speck, targeting on
maintaining an acceptable level of security on a diverse
collection of IoT devices [41]. Speck has been delicately de-
signed and optimized for software implementations, while
Simon’s focused on hardware implementations. To meet the
various demands in complex IoT environment, Simon and
Speck are provided with different parameters (key size and
encryption round) to balance the security protection level
and processing efficiency on IoT chips.

The parameter selection when we implement Simon
and Speck approaches is illustrated in Table. 7, which is
also reported in [41], [42]. It ensures a better security and
efficiency trade-off for most IoT scenarios. To have a bet-
ter understanding of the performance of the lightweight
ciphers, we use Simon, Speck and Kryptein to encrypt
and decrypt a series of heart rate data points (around one
minute) and measure their time and energy consumption
respectively. The energy consumption is benchmarked using
the equipment shown in Fig. 12.

The results of the computation time and energy con-
sumption on the IoT device are shown in Table. 8 which are
derived from averaging over 20 measurements. From the
results, we can find Simon is more efficient than Speck on
SensorTag when smalle key size (e.g., 64-bits and 128-bits)
and few encryption rounds (e.g., 32 and 44) are chosen. In
some cases, the energy consumption of Simon and Speck
is not consistent. By that it implies that some parts of
its encrypt/decrypt statement will consume more energy
than others. It demonstrates as the ’spike’ in the power
measurement illustration (refers to Fig. 12). The inconsistent
energy consumption is also measured and noted in the
Table. 8. The digits in brackets represent for the various
voltage and its last time respectively when fluctuated energy
consumption (or spike) happens. For every 1 minute’s heart
rates, Kryptein takes about 20% less energy with roughly
same computation time (for both encryption and decryp-
tion). This is due to the spike occurred in Simon and Speck
always refers to a higher momentary voltage (than the stable
period), which cause a higher total power consumption.
Contrast to Simon and Speck, the power consumption of
Kryptein is stable and the spike period is very short (less
than 1 ms). Specificaly, compared with the most efficient
computing case (Simon with 128 128), IoT devices (data)
running our proposed system can achieve about 35% ex-
tended lifetime.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 14

TABLE 8: Comparison with the lightweight encryption methods for IoT: Simon and Speck

Simon Speck Kryptein
Time (ms) Voltage (mw) Energy Consumption (µj) Times (ms) Voltage (mw) Energy Consumption (µj) Time (ms) Voltage(mw) Energy Consumption (µj)

Encryption
64 32 5.45 27 44.15 6.10 27 49.41

8.31 14 34.90128 128 5.50 27 44.55 8.70(3.64) 27(14) 50.73
256 128 12.6(5.32) 27(14) 73.60 8.83(3.51) 27(14) 50.75

Decryption
64 32 8.57(4.94) 27(14) 55.26 6.88 27 55.73

8.57 14 35.99128 128 6.1 27 49.41 8.50(3.20) 27(14) 48.18
256 128 13.12(5.32) 27(14) 75.86 8.69(3.38) 27(14) 49.68

11 LONG-TERM USABILITY STUDY

There is a common concern on privacy or security-related
systems using bio-information as the ‘key’: whether the
system is robust to long-term usage when the user’s bio-
information changes gradually overtime. For example, hu-
man’s gait information is often used as authentication cri-
terion however it is very likely to change when one’s
physical body status changes (e.g., knee injuries) [43]. So
we investigate if the performance (reconstruction accuracy)
of Kryptein is vulnerable under such change, i.e.,if the dic-
tionary generated from historical data (e.g., previous heart
rates) will fail to compress/reconstruct the data accurately
after being used for a long time.

To address this concern, we conduct a long term experi-
ment with Kryptein on heart rates compression and recon-
struction. The dataset collection phase spans over half year
(34 weeks) and 3 to 8 hours’ heart rate series are collected
in each week. The experiments are not under controlled
environment, users are in their normal daily routines and
activities (walking, jogging, eating, ect) when collecting the
heart rates.

Reconstruction Error for A Period of Time

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

Fig. 13: Reconstruction error on a period of time hear rate
data. y-axis is the real reconstruction error, x-axis represents
for 34 weeks data is collected for test.

The raw heart rates data is collected without sophisti-
cated preprocessing (e.g., filtering). They are fed directly to
Kryptein and stored in the Cloud. We use the first week’s
(about 4 hours) heart rates to train the dictionary and
generate the encryption key based on the learned dictionary.
Then the dictionary is fixed and the reconstruction error of
Kryptein over the 34 week’s is illustrated in Fig. 13. The
results show that the first week’s reconstruction error is the
smallest (about 1.5) since the key is generated from the same
set. For the following 33 weeks, the average reconstruction
error fluctuates near 2 and no explicit trend of performance
loss is observed overtime. Considering the inherent error
caused by the hardware and the range of heart rates, the
average reconstruction error is reasonable (the average of

those heart rate data is about 76). Consequently, we can
claim that there is no need for Kryptein to update its
dictionary for a long-term utility performance.

11.1 Security Analysis with Long-Term Key

The privacy analysis section (see Section 8) has demon-
strated the proposed CS-encrypted system is secure in the
“one-time-padding” situation. However, in the practical
scenarios, those encryption keys are used multiply times
(or in a long term). Thus, in the worst case (i.e., the Cloud
get compromised), our cryptosystem cannot achieve prefect
secrecy in the multiple-time-padding scenario [24].

To better illustrate the privacy protection and discuss the
protection guarantee provided by our cryptosystem in long-
term cases, we adopt the extended Shannon-sense (ESS)
perfect secrecy and extended Wyner-sense (EWS) perfect
secrecy definition from [44]. In our proposed cryptosystem
Y ′ = AX (refers to Equation 7), the ESS perfect secrecy then
can be described as:

G(Y′,X,A) = I(Y′; X) + I(Y′; A), (12)

where I represents the mutual information, Y ′ represents
ciphertext, A represents the key and X represents the plain-
text. Thus, it is ESS perfect secrecy if G(Y′,X,A) = 0.
To estimate the ESS perfect secrecy, the EWS criterion is
adopted, since the criterion [45] has been used to measure
the security of the compression-involved cryptosystem [46],
which is similar to our CS-based cryptosystem. Therefore,
the ESS perfect secrecy then can be described as:

lim
n→∞

G(Y′,X,A)

n
= 0, (13)

where n denotes the length of the plaintext, thus, we can
have:

lim
n→∞

G(Y′,X,A)

n
= lim
n→∞

I(Y′;X) + I(Y′;A)

n
(14)

From [44], one can obtain:

I(Y′;X) ≥
N∑
i=1

I (y′i;xi) , (15)

and from the Lemma in [25], one can see that each ci-
phertext is not independent of the corresponding plaintext,
i.e., ∀i,∃δ > 0 which results in:

I (y′i;xi) ≥ δ (16)

Assume the same key is usedN times, then we can have:

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 15

lim
n→∞

G(Y′,X,A)

n
= lim
n→∞

I(Y′;X) + I(Y′;A)

n

≥ lim
n→∞

I(Y′;X)

n

≥ lim
n→∞

∑N
i=1 I (y′i;xi)

n

≥ lim
n→∞

Nδ

n
≥ δ
> 0.

Thus, if the same key is used N ≥ n times, the proposed
cyrptosystem cannot achieve the EWS perfect secrecy, the
detail proof can be referred in [44]. Back to our long-term
usability scenario, even the same key won’t affect utility
accuracy, in worst case, we suggest to update the dictionary
key after being used for 60 times (the learned sparse repre-
sentation matrix dimension for heart rate date is 60×60) for
better privacy protection purpose.

12 ANALYTICS WITH KRYPTEIN

One of those significant reasons facilitates the IoT ecosystem
blooming is about the data generated by those seamless
connected sensors also help people gain more insights from
the cyber physical world. Usually, analytics tasks like clus-
tering, regression, classification, etc., are conducted on those
collected IoT data to help the public interact with the phys-
ical world better. However, the most common approach for
those analytics model deployed today is about data owners
storing their data at ‘trusted’ third-party service providers
(SP) who can observe the raw data values. However, the
plain data for analytics tasks are always a big concern for
the public due to the fact there is no guarantee the data
won’t be leaked or misused by the SP [47], [48]. To address
this concern but continuously work with those honest-
but-curious SP, many privacy-preserving data analytics are
proposed. However, the efficiency, privacy and utility trade-
off has to be analyzed before being used for the various IoT
applications.

We investigate the analytics performance on the pro-
posed systems on a real-world scenario: face recogni-
tion/classification on camera-enabled IoT devices. Face im-
ages collected by IoT devices like IP camera are widely
used in security surveillance systems. Take the airport’s
surveillance camera system as an example, the security
group who deploys the IP camera is taking the face im-
ages from government department for training the identity
recognition system purpose. The face images are sensitive
which may reveal person identity information once accessed
by the malicious party. Besides, the training set (face images)
remained in the analytics model may pose a new threat to
the privacy issues, since sensitive information in the training
data may be revealed by malicious people via utilizing
careful analysis [49].

With the help of Kryptein, we can CS-encrypted the face
data before sending to the untrusted Cloud for analytics
learning. In this case, each face image is normalised (to
range [0,1]) then transferred into ciphertext domain (see y′

in Algorithm 1). As long as those face data is CS-encrypted
by the same key used in Kryptein (the inner distances
among the data are remained), the cipher stored on the

Cloud can be directly used for most of linear-regression-
related analytics tasks. IoT devices embedded with Kryptein
and key then can send the new CS-encrypted recording face
image to Cloud for human identity recognition.

Our proposed new IoT encryption primitive is consid-
ered to address this privacy concern. Since no plain text
(clear) is ever stored/revealed in the ‘honest-but-curious’
server, extract useful information from the analytics model
is as difficult as reconstruct it from the cipher (refers to
Section 8). Since the efficiency of Kryptein on IoT has al-
ready been evaluated (refers to Section 10), we will evaluate
the utility for analytics and the privacy protection in this
following section.

We test our proposed system using Orl dataset [50]. The
face images in Orl database are greyscale. The raw size of
each image is 92 × 112 pixels. There are 40 subjects and
10 images for every subject. In our evaluation, we select
8 images of each subject for training and rest 2 images
for testing. This refers to the real-world scenario that the
surveillance camera system contains some existing face
images for building analytics models then recognises the
appointed suspect identity in real-time video surveillance.

80 160 240 400 800 1000 2000 5000 8000
75

80

85
87

90

95
96

100
Ac

cu
ra

cy
(%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
om

pr
es

si
on

 R
at

io

SVM KNN

Fig. 14: Classification accuracy on various compression
ratio.x-axis represents for the dimension after compression.

Kryptein only stores the compressed and perturbed data
on the Cloud in the default setting, thus the Cloud cannot do
anything but storage. However, for the further application
purpose, if the user is willing to share partial key with Cloud
(same as Bob’s key), the Cloud can directly run analtyics
tasks like face recognition. Thus, the Cloud can provide
many useful analytics services but without (the capability
of) revealing the raw sensitive data (appearance of the face).
The evaluations on classification tasks are performed with
commonly used classifiers: K-nearest neighbour (KNN) and
support vectors machine (SVM) and the results are shown
in Fig. 14. The baseline classification accuracy with raw face
images is 96.25% and 95% for KNN and SVM respectively
while classifiers with the ciphers encoded by Kryptein are
able to achieve comparable classification accuracy. For ex-
ample, when face images are compressed and encrypted
from 10,304 dimension to 240, the accuracy of both the
classifiers can still achieve above 90%. Considering the
energy and time saved (e.g., communication) by Kryptein,
the accuracy sacrifice is acceptable.

We then evaluate the performance of Kryptein on pri-
vacy protection in the analytics scenario. We use mutual
information [51] as our evaluation metric, which measures

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 16

80 160 240 400 800 1000
0.0122

0.2

0.4

0.6

0.8

1

1.2

M
ut

ua
l I

nf
or

m
at

io
n

0

0.2

0.4

0.6

0.8

C
om

pr
es

si
on

 R
at

io

mutual information
compression ratio

Fig. 15: Mutual information on various compression ratio.
x-axis represents for the dimension after compression.

the distance between the original training instance and the
CS-encrtyped instance stored on the Cloud. The mutual
information of two variables A and B can be computed
using the probability distributions,

I(A,B) =
∑
a,b

pAB(a, b)log
pAB(a, b)

pA(a) · pB(b)
(17)

where pA(a) and pB(b) are marginal probability distribution
and joint probability distribution pAB(a, b) are statistically
independent if pAB(a, b) = pA(a) · pB(b). When mutual
information of two variables I(A,B) = 0, it implies that
A and B are absolute independent. In the context of this
paper, smaller I(x, y′) implies that there is less information
can be referenced from y′ about x, which implies attacker
is hard to reconstruct the exact raw data x from y′ (x is the
original data and y′ is the CS-encrypted data stored on the
Cloud).

Fig. 15 illustrates the result about the privacy protection
status of Kryptein with mutual information metric. We use
320 bins in our mutual information calculation as there are
320 training images stored in the server. It can be seen from
the figure that the mutual information drops as the compres-
sion ratio increases. This is due to the fact that Kryptein’s
perturbation process will involve random noise by multi-
plying the random matrix. The perturbation matrix has the
same dimension as the compressed data, so that the higher
compression ratio, the more noise is inserted, which shows
a decreasing trend for mutual information. The dot line in
Fig. 15 represents for the safest case, using the dimension of
raw face data (10,304) for random perturbation matrix, and
the mutual information is the lowest at 0.0122, which im-
plies there is very little correlated information between the
raw face data and CS-encrypted face data. However, higher
compression ratio results in more energy consumption and
longer computation time in IoT devices. Overall speaking, it
is suggested to choose the compression dimension balancing
the efficiency, utility and privacy trade-off for various IoT
applications. In our face (Orl dataset) recognition system,
240 is the reasonable dimension.

13 CONCLUSION

We presented Kryptein, a system that provides an efficient
and practical level of confidentiality in the face of three
significant threats confronting database applications: curi-
ous DBAs, arbitrary compromises of the application server

and the DMBS and eavesdropping from the communication
tunnel. Unlike other encryption systems, Kryptein takes
compressive sensing as the underlying encryption mecha-
nism and takes significantly less energy and computation
consumption than the state-of-the-art. Kryptein meets its
goals using three different layers: random compressed en-
cryption, statistical computation over cipher and raw data
decryption.

The evaluation results show Kryptein outperforms state-
of-the-art systems such as CryptDB and Talos by two order-
of-magnitudes in terms of computation time and energy
consumption in embedded client devices, also outperforms
state-of-the-art IoT ciphers (Simon and Speck) by extending
about 35% IoT devices’ (battery) lifetime. For the statis-
tical data calculation, only a very simple calculation was
required. For one segment of data (one matrix multiply),
Kryptein achieved high accuracy (96%) on calculating the
statistics without requiring to decrypt the raw data. The
evaluation results show that it is difficult for attackers to
reconstruct the original data from cipher without produc-
ing large errors. The experiments also illustrate IoT data
variance will not affect Kryptein’s accuracy in a long term
usage, and the proposed system is also able to support the
basic analytics tasks like classification on IoT.

ACKNOWLEDGMENTS

The work has been supported by the Cyber Security Re-
search Centre Limited whose activities are partially funded
by the Australian Governments Cooperative Research Cen-
tres Programme.

REFERENCES

[1] M. Chui, M. Löffler, and R. Roberts, “The internet of things,”
McKinsey Quarterly, vol. 2, no. 2010, pp. 1–9, 2010.

[2] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, “Fog
computing: Focusing on mobile users at the edge,” arXiv preprint
arXiv:1502.01815, 2015.

[3] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: protecting confidentiality with encrypted query pro-
cessing,” in Proc. of SOSP. ACM, 2011, pp. 85–100.

[4] H. Shafagh, A. Hithnawi, A. Dröscher, S. Duquennoy, and W. Hu,
“Talos: Encrypted query processing for the internet of things,” in
Proc. of SenSys. ACM, 2015, pp. 197–210.

[5] D. L. Donoho, “Compressed sensing,” Information Theory, IEEE
Transactions on, vol. 52, no. 4, pp. 1289–1306, 2006.

[6] M. R. Mayiami, B. Seyfe, and H. G. Bafghi, “Perfect secrecy using
compressed sensing,” arXiv preprint arXiv:1011.3985, 2010.

[7] R. Rana, M. Yang, T. Wark, C. T. Chou, and W. Hu, “Simpletrack:
Adaptive trajectory compression with deterministic projection
matrix for mobile sensor networks,” Sensors Journal, IEEE, vol. 15,
no. 1, pp. 365–373, 2015.

[8] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary
learning for sparse coding,” in Proc. of ICML. ACM, 2009, pp.
689–696.

[9] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al., “Least angle
regression,” The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[10] M. R. Osborne, B. Presnell, and B. Turlach, “A new approach to
variable selection in least squares problems,” 1999.

[11] M. Elad, “Optimized projections for compressed sensing,” Signal
Processing, IEEE Transactions on, vol. 55, no. 12, pp. 5695–5702, 2007.

[12] M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson,
G. Sapiro, and L. Carin, “Nonparametric bayesian dictionary
learning for analysis of noisy and incomplete images,” Image
Processing, IEEE Transactions on, vol. 21, no. 1, pp. 130 –144, jan.
2012.

[13] A. Paverd, A. Martin, and I. Brown, “Modelling and automatically
analysing privacy properties for honest-but-curious adversaries.”

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 17

[14] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar, “On the
privacy preserving properties of random data perturbation tech-
niques,” in Proc. of ICDM. IEEE, 2003, pp. 99–106.

[15] F. Inc. (2016) Fitbit. [Online]. Available: https://www.fitbit.com/
au

[16] M. Inc. (2016) Microsoft band. [Online]. Available: http:
//www.microsoft.com/Microsoft-Band/

[17] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “The
johnson-lindenstrauss lemma meets compressed sensing,” Con-
structive Approximation, 2007.

[18] S. Bajaj and R. Sion, “Trusteddb: A trusted hardware-based
database with privacy and data confidentiality,” Knowledge and
Data Engineering, IEEE Transactions on, vol. 26, no. 3, pp. 752–765,
2014.

[19] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” in Proc. of the VLDB
Endowment, vol. 6. VLDB Endowment, 2013, pp. 289–300.

[20] C. Stergiou, K. E. Psannis, B.-G. Kim, and B. Gupta, “Secure inte-
gration of iot and cloud computing,” Future Generation Computer
Systems, vol. 78, pp. 964–975, 2018.

[21] P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen,
“Privacy-preserving outsourced classification in cloud comput-
ing,” Cluster Computing, vol. 21, no. 1, pp. 277–286, 2018.

[22] W. Xue, Y. Shen, C. Luo, W. Hu, and A. Seneviratne, “Acies: A
privacy-preserving system for edge-based classification,” in 2018
17th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/12th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE,
2018, pp. 914–919.

[23] M. S. de Brito, S. Hoque, R. Steinke, A. Willner, and T. Magedanz,
“Application of the fog computing paradigm to smart factories
and cyber-physical systems,” Transactions on Emerging Telecommu-
nications Technologies, vol. 29, no. 4, p. e3184, 2018.

[24] C. E. Shannon, “Communication theory of secrecy systems*,” Bell
system technical journal, vol. 28, no. 4, pp. 656–715, 1949.

[25] Y. Rachlin and D. Baron, “The secrecy of compressed sensing
measurements,” in Communication, Control, and Computing, 2008
46th Annual Allerton Conference on. IEEE, 2008, pp. 813–817.

[26] S. Agrawal and S. Vishwanath, “Secrecy using compressive sens-
ing,” in Information Theory Workshop (ITW), 2011 IEEE. IEEE, 2011,
pp. 563–567.

[27] C. Wang, B. Zhang, K. Ren, and J. M. Roveda, “Privacy-assured
outsourcing of image reconstruction service in cloud,” IEEE Trans-
actions on Emerging Topics in Computing, vol. 1, no. 1, pp. 166–177,
2013.

[28] S.-Y. Chiu, H. H. Nguyen, R. Tan, D. K. Yau, and D. Jung,
“Jice: Joint data compression and encryption for wireless energy
auditing networks,” in Sensing, Communication, and Networking
(SECON), 2015 12th Annual IEEE International Conference on. IEEE,
2015, pp. 453–461.

[29] Z. Huang, W. Du, and B. Chen, “Deriving private information
from randomized data,” in Proc. of SIGMOD. ACM, 2005, pp.
37–48.

[30] F. Li, J. Sun, S. Papadimitriou, G. A. Mihaila, and I. Stanoi, “Hiding
in the crowd: Privacy preservation on evolving streams through
correlation tracking,” in Proc. of ICDE. IEEE, 2007, pp. 686–695.

[31] S. Papadimitriou, F. Li, G. Kollios, and P. S. Yu, “Time series com-
pressibility and privacy,” in Proc. of VLDB. VLDB Endowment,
2007, pp. 459–470.

[32] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting
locations and travel sequences from gps trajectories,” in Proc. of
WWW. ACM, 2009, pp. 791–800.

[33] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Show
me how you move and i will tell you who you are,” in Proc. of
SPRINGL. ACM, 2010, pp. 34–41.

[34] J. Liu, B. Priyantha, T. Hart, H. S. Ramos, A. A. Loureiro, and
Q. Wang, “Energy efficient gps sensing with cloud offloading,” in
Proc. of SenSys. ACM, 2012, pp. 85–98.

[35] S.-Y. Juan, Y.-F. Chung, C.-T. King, and C.-H. Hsu, “Cegf: corner
extraction by gps filtering for power-efficient location uploading,”
in Proc. of MobiSys. ACM, 2013, pp. 537–538.

[36] Q. T. Inc. (2016) Tren power profiler. [Online]. Available: https:
//developer.qualcomm.com/software/trepn-power-profiler

[37] zip. (2014) Zip4j:java library to handle zip files. [Online].
Available: http://www.lingala.net/zip4j/

[38] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and
flexible operating system for tiny networked sensors,” in Proc. of
LCN. IEEE, 2004, pp. 455–462.

[39] W. Xue, C. Luo, G. Lan, R. Rana, W. Hu, and A. Seneviratne,
“Kryptein: a compressive-sensing-based encryption scheme for
the internet of things,” in 2017 16th ACM/IEEE International Con-
ference on Information Processing in Sensor Networks (IPSN). IEEE,
2017, pp. 169–180.

[40] R. Rana, M. Yang, T. Wark, C. T. Chou, and W. Hu, “Simpletrack:
Adaptive trajectory compression with deterministic projection
matrix for mobile sensor networks,” IEEE Sensors Journal, vol. 15,
no. 1, pp. 365–373, 2014.

[41] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “Notes on the design and analysis of simon and
speck.” IACR Cryptology ePrint Archive, vol. 2017, p. 560, 2017.

[42] Z. Liu, Y. Li, and M. Wang, “Optimal differential trails in simon-
like ciphers,” IACR Transactions on Symmetric Cryptology, pp. 358–
379, 2017.

[43] W. Xu, Y. Shen, Y. Zhang, N. Bergmann, and W. Hu, “Gait-
watch: A context-aware authentication system for smart watch
based on gait recognition,” in Proceedings of the Second International
Conference on Internet-of-Things Design and Implementation. ACM,
2017, pp. 59–70.

[44] Z. Yang, W. Yan, and Y. Xiang, “On the security of compressed
sensing-based signal cryptosystem,” IEEE Transactions on Emerging
Topics in Computing, vol. 3, no. 3, pp. 363–371, 2014.

[45] A. D. Wyner, “The wire-tap channel,” Bell system technical journal,
vol. 54, no. 8, pp. 1355–1387, 1975.

[46] M. Johnson, P. Ishwar, V. Prabhakaran, D. Schonberg, and K. Ram-
chandran, “On compressing encrypted data,” IEEE Transactions on
Signal Processing, vol. 52, no. 10, pp. 2992–3006, 2004.

[47] M. Weinstein, “What your fitbit doesn’t want you to know,”
https://www.huffpost.com/entry/what-your-fitbit-doesnt-w b
8851664?guccounter=1.

[48] M. Burgess, “Stravas data lets anyone see the
names (and heart rates) of people exercising on
military bases,” https://www.wired.co.uk/article/
strava-military-bases-area-51-map-afghanistan-gchq-military.

[49] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Tal-
war, “Semi-supervised knowledge transfer for deep learning from
private training data,” arXiv preprint arXiv:1610.05755, 2016.

[50] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic
model for human face identification,” in Proceedings of 1994 IEEE
Workshop on Applications of Computer Vision. IEEE, 1994, pp. 138–
142.

[51] D. Agrawal and C. C. Aggarwal, “On the design and quantifi-
cation of privacy preserving data mining algorithms,” in Proceed-
ings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. ACM, 2001, pp. 247–255.

PLACE
PHOTO
HERE

Wanli Xue Biography text here.

Chengwen Luo Biography text here.

Yiran Shen Biography text here.

Rajib Rana Biography text here.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

https://www.fitbit.com/au
https://www.fitbit.com/au
http://www.microsoft.com/Microsoft-Band/
http://www.microsoft.com/Microsoft-Band/
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
http://www.lingala.net/zip4j/
https://www.huffpost.com/entry/what-your-fitbit-doesnt-w_b_8851664?guccounter=1
https://www.huffpost.com/entry/what-your-fitbit-doesnt-w_b_8851664?guccounter=1
https://www.wired.co.uk/article/strava-military-bases-area-51-map-afghanistan-gchq-military
https://www.wired.co.uk/article/strava-military-bases-area-51-map-afghanistan-gchq-military

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2992737, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, NOV 2019 18

Guohao Lan Biography text here.

Sanjay Jha Biography text here.

Aruna Seneviratne Biography text here.

Wen Hu Biography text here.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:15:20 UTC from IEEE Xplore. Restrictions apply.

